The Effects of Relevance Feedback Quality and Quantity in Interactive Relevance Feedback: A Simulation Based on User Modeling
نویسندگان
چکیده
Experiments on the effectiveness of relevance feedback with real users are time-consuming and expensive. This makes simulation for rapid testing desirable. We define a user model, which helps to quantify some interaction decisions involved in simulated relevance feedback. First, the relevance criterion defines the relevance threshold of the user to accept documents as relevant to his/her needs. Second, the browsing effort refers to the patience of the user to browse through the initial list of retrieved documents in order to give feedback. Third, the feedback effort refers to the effort and ability of the user to collect feedback documents. We use the model to construct several simulated relevance feedback scenarios in a laboratory setting. Using TREC data providing graded relevance assessments, we study the effect of the quality and quantity of the feedback documents on the effectiveness of the relevance feedback and compare this to the pseudo-relevance feedback. Our results indicate that one can compensate large amounts of relevant but low quality feedback by small amounts of highly relevant feedback.
منابع مشابه
Query expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملBelievable Visual Feedback in Motor Learning Using Occlusion-based Clipping in Video Mapping
Gait rehabilitation systems provide patients with guidance and feedback that assist them to better perform the rehabilitation tasks. Real-time feedback can guide users to correct their movements. Research has shown that the quality of feedback is crucial to enhance motor learning in physical rehabilitation. Common feedback systems based on virtual reality present interactive feedback in a monit...
متن کامل